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Organoids and their Applications in Parkinson's Disease

Abstract
Parkinson's disease is the second largest neurodegenerative disease which usually causes a huge economic and living burden for the patients and their families no matter in 
developed countries or developing countries; so far, there is no ideal treatment for it. With the rapid development of regenerative medicine, especially stem cell technology, 
3D brain organoid models have been developed and demonstrated great potential applications in pathogenesis, new drug development and new therapeutic method of 
nervous system diseases. Here, we will summarize the recent progress on organoid models and their application in Parkinson's disease, and discuss the challenges and 
the limitation of organoids application in Parkinson's disease, which may provide some clues for understanding the pathogenesis of Parkinson's disease and developing the 
drugs for the Parkinson's disease.
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Introduction

Parkinson's Disease (PD) is one kind of common degenerative 
diseases of the nervous system. which commonly occurred in the elderly 
population aged above 60 years old, and the prevalence of PD in people 
over 65 years old in China is about 1.7%; the epidemic characteristics of 
PD are generally sporadic, less than 10% PD patients have a family history; 
the main pathological characteristics of PD is the degeneration and death 
of dopaminergic neurons in the substantia nigra of the midbrain [1-4]. So 
far, the exact pathogenic cause of PD is still unclear. Many influence factors 
including heredity, environment, aging, oxidative stress may participate in the 
process of degeneration and death of PD dopaminergic neurons and finally 
leading to PD [5-8]. For understanding the pathogenesis and the underlying 
mechanism of PD, there are several kinds of commonly used and classic 
animal models including 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine 
(MPTP)-induced or 6-Hydroxydopamine (6-OHDA) induced PD animal 
model, transgenic Parkinson's animal model, and induced Pluripotent 
Stem Cells (iPS) induced PD animal model. In particular, with the unique 
characteristics of self-renewal and multi-directional differentiation, iPS 
could differentiate into various tissue cells under certain conditions, and 
iPS-induced PD animal model have incomparable advantages for PD 
application. However, because the complexity of PD symptoms and the 
unclear mechanisms of PD, different animal models can only simulate some 
symptoms at present.

Recently, with the rapid development of stem cell technology, scientists 
could obtain 3D stem cell populations (organoids) with self-renewal 
characteristics through special culture methods or with the help of special 
material structures (devices) [9,10].Organoids could provide a highly 
physiological related system usually contain spatial tissue structures similar 
to human organs and contain some special key functions of human organs. 
So far, scientists have been successfully applied to various tissue cultures 
including intestine [11,12], liver [13-15], pancreas [16,17], kidney [18,19], 
prostate [20,21], lung [22] and brain [23,24], and there are many amazing 
articles reported that brain organoids and its applications in PD research. In 
this review, we will summarize the recent research progress on preparation 
methods, applications and application limitations of PD organoids.

Literature Review

Preparation methods of PD organoids 
A successful and reliable 3D organoid model is the key to the study 

mechanism, pathology or applications of PD. To maximize and effectively 
mimic the characteristics of PD patients, there are many preparation 
methods of PD including adding the growth factors, small molecules, 
transcription factors or signal pathway regulators into culture medium; co-
culture and special 3D culture device. The detailed information of several 
classical organoid preparation methods for PD organoids was listed as 
follows (Table 1).
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Table 1. Several classical PD organoid preparation methods.

Preparation methods
Cell lines Culture medium Whether needs 3D Supplement Refrences 

 hiPSCs, EB Human embryonic stem cell growth medium, neural 
stem cell medium

No Fibroblast growth factor 2 (20 ng/mL) epidermal growth 
factor (20 ng/mL) ,200 nM ascorbic acid, 20 ng/mL 

BDNF, 100 ng/mL SHH, and 20 ng/mL GDNF

[25]

pNSCs Spontaneous differentiation medium (differentiation 
medium with 10 ng/mL BDNF and 10 ng/mL GDNF), 

midbrain-specification medium (differentiation 
medium with 100 ng/mL Shh and 100 ng/mL FGF8)

 Activin A / [26]
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hESCs,  EB  DMEM/F12 Matrigel, orbital shaker 20% Knockout Serum Replacement (KSR),
3% FBS, 2 mM GlutaMAX, 1% nonessential amino 

acids, 50 nM β-mercaptoethanol, and bFGF (4 ng/ml). 
ROCK inhibitor Y27632 (50 μM) ,1× N2 supplement, 
1% nonessential amino acids, 2 mM GlutaMAX, and 

heparin (1 μg/ml)

[27]

hPSC Neural induction medium, neural differentiation 
medium

Orbital shaker ROCK inhibitor Y27632, B27, SB431542, 
Noggin,  ascorbic acid, insulin, sonic hedgehog, 

purmorphamine, CHIR99021, FGF8b

[28]

 iPSCs N2B27 medium  Activin A  Ascorbic acid, CHIR 99021, Smoothened Agonist,  
SB-431542, LDN-193189,  BDNF, GNDF, TGF-β3, 

cAMP, DAPT,  Activin A

[29]

 hiPSC  Stem cell medium Matrigel, spinning 
bioreactor

Dorsomorphine, A83-01, WNT-3A, CHIR99021, SB-
431542, 2-Mercaptoenthanol, Insulin, Ascorbic Acid, 

TGF-β, cAMPb

[30]

iPSCs Neural induction medium, midbrain patterning 
medium

Matrigel, orbital shaker, 
PLGA or CF fiber

Noggin, SB431542, CHIR99021, FGF8, sonic 
hedgehog, 

[31]

iPSCs Neurobasal medium  Collagen type I SB/noggin,  retinoic acid, FGF-2,  TGFβ1, DAPT [32]

PD organoids as the disease models for PD research
Because of the multi-lineage differentiation potentials of stem cells 

including induced Pluripotent Stem Cells (iPSCs) and Mesenchymal Stem 
Cell (MSCs), stem cells have been widely used in the research and application 
of Parkinson's disease, but stem cells model as a two-dimensional model 
in vitro, it is difficult to mimic the 3D complex structure of human brain. 
Instead, organoids have the similar function and 3D structure of human 
organs, also could mimic the complex pathophysiological process, which 
provide a powerful tool for PD research, and has attracted great interest of 
scientists. For example, Andrea Becerra-Calixto, et al. generated a kind of 
αSyn gene (SNCA)-expressing PD organoids by iPSCs which came from a 
healthy female aged 80 years old and a female fPD patient aged 55 years 
old with SNCA gene triplication, and evaluation of organoid phenotype 
by immunohistochemistry and immunofluorescence staining found the 
organoids could express SOX2, Nestin, En-1, Otx2, Lmx1a, Nurr1, MAP2, 
and TH; the αSyn gene (SNCA)-expressing PD organoids could also mimic 
the pathogenesis of Lewy bodies of PD. Those data provide a method 
for obtaining midbrain organoids, those midbrain organoids could mimic 
the formation of Lewy bodies in space and morphology, and provide an 
evidence that the accumulation of αSyn was paralleled by the loss and 
apoptosis of DA neurons. Therefore, the αSyn gene (SNCA)-expressing 
PD organoids may be applied to relevant drug screening in the future [33]; 
for understanding the effect of LRRK2 and PINK1, Zhi Dong Zhou, et al. 
developed a kind of midbrain organoids from iPSCs with or without LRRK2 
and PINK1 mutation, compared with transgenetic mouse and Drosophila 
models, found the gene LRRK2 and PINK1 have the unique regulatory 
mechanism in pathogenesis of PD[34]; and David Pamies, et al. developed 
a kind of PD organoids from the iPSC-derived neural progenitor cells, to 
study the neurotoxicity of 6-OHDA, MPTP, and MPP+. After analyzed and 
compared by Resazurin assay, ROS assay, mitotracker, transendothelial 
electrical resistance recording, Immunocytochemistry, RT-qPCR, and 
metabolomics analysis, found that 6-OHDA, MPTP, and MPP+ have different 
pathological mechanisms of PD, especially 6-OHDA can effectively increase 
ROS production and reduce mitochondrial function in the three chemicals 
[35]. These evidences demonstrated that PD organoids can be used as a 
powerful tool to study the pathogenesis and underlying mechanism of PD.

Discussion

PD organoids applications in drug discovery and drug 
screening

It can be said that, the drug development involves multiple stages 
from molecular synthesis to clinical application, animal models are often 

used to verify the effectiveness and toxicity of the drug, but animal model 
has the obvious difference from human organ structure and physiological 
and pathological process of human disease, therefore, an economical and 
effective disease model close to human organ is often needed for drug 
research and development to reduce the cost and time of new drug research 
and development. The appearance of PD organoids has great attraction 
for drug discovery or drug screening. For example, Tae Hwan Kwak, et al. 
generated a kind of homogeneous midbrain organoids including multiple 
nerve cell types (neurons, astrocytes and oligodendrocytes) from ESCs 
with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuron death 
characteristic, which may provide a neurotoxicity model in vitro for PD drug 
development [36]; Renner, H.et al. developed a kind of midbrain organoids 
from Human small molecule Neural Precursor Cell (smNPC), and compared 
the 3D midbrain organoids and 2D culture application in high throughput 
drug screening, found the 3D midbrain organoids have the higher sensitivity 
in dose-response neurotoxicity experiment [37]; Due to the limitation of 
technologies, there are many problems of organoids produced by current 
methods, such as lack of homogeneity. For solving this problem, Henrik 
Renner, et al. developed a high-throughput screening automated workflow, 
this kind automated workflow could obtain the organoids with homogeneous 
morphology, similar gene expression patterning and highly unified structure, 
which may provide an excellent PD drug development platform [38]; and 
Nguyen-Vi Mohamed, et al. invented a kind of organoid workflow which 
could produce large-scale and uniform PD organoids at one time, reduce 
human operation, the reagent volumes and save the cost, this method can 
not only meet the needs of PD research, but also be applied to the drugs 
screening for PD [39].

Conclusion

The main challenges of organoids applications in PD is how to obtain 
a large number of homogeneous organoids that are close to the structure 
and function of human organs according to different purposes. Because 
of technical limitations, the applications of PD organoids is limited to the 
academic research stage, which is difficult to apply to large-scale industrial 
production. For this reason, we think there are several problems need to 
solve: 1) how to obtain PD organoids with high consistency of pathophysiology 
characteristic and complex structure of neuron-glial interaction; 2) how to 
make large-scale industrial production of PD organoids; 3) how to store 
and transport the PD organoids, and to establish standardized operation 
process to reduce mechanical damage of PD organoids. Anyway, with the 
continuous progress and development of technologies, PD organoids will 
make a major breakthrough in the future, which will play a great role in 
mechanism study and drug development of PD.
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